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Increased hyperpolarized [1‐13C] lactate production in a model
of joint inflammation is not accompanied by tissue acidosis as
assessed using hyperpolarized 13C‐labelled bicarbonate
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Arthritic conditions are a major source of chronic pain. Furthering our understanding of disease

mechanisms creates the opportunity to develop more targeted therapeutics. In rheumatoid

arthritis (RA), measurements of pH in human synovial fluid suggest that acidosis occurs, but that

this is highly variable between individuals. Here we sought to determine if tissue acidosis occurs

in a widely used rodent arthritis model: complete Freund's adjuvant (CFA)‐induced inflammation.

CFA robustly evoked paw and ankle swelling, concomitant with worsening clinical scores over

time. We used magnetic resonance spectroscopic imaging of hyperpolarized [1‐13C]pyruvate

metabolism to demonstrate that CFA induces an increase in the lactate‐to‐pyruvate ratio. This

increase is indicative of enhanced glycolysis and an increased lactate concentration, as has been

observed in the synovial fluid from RA patients, and which was correlated with acidosis. We also

measured the 13CO2/H
13CO3

− ratio, in animals injected with hyperpolarized H13CO3
−, to

estimate extracellular tissue pH and showed that despite the apparent increase in glycolytic

activity in CFA‐induced inflammation there was no accompanying decrease in extracellular pH.

The pH was 7.23 ± 0.06 in control paws and 7.32 ± 0.09 in inflamed paws. These results could

explain why mice lacking acid‐sensing ion channel subunits 1, 2 and 3 do not display any changes

in mechanical or thermal hyperalgesia in CFA‐induced inflammation.
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1 | INTRODUCTION

Arthritis underlies about 40% of cases of chronic pain,1 and understanding the cause of this pain is essential in developing new analgesics. During

inflammation, sensory neurones innervating joints become sensitized,2-5 which contributes to the tenderness of arthritic joints.6,7 The inflammatory

milieu contains many mediators, including protons, and early measurements of synovial fluid pH from rheumatoid arthritis (RA) patients found a pH

of 7.21, compared with 7.43 in healthy subjects.8 Similar acidosis was observed by others,9,10 with a fourth study showing that RA synovial fluid

can become very acidic (pH 6.61 versus pH 7.30).11 However, a more recent study found that, although RA synovial fluid was more acidic than that

of synovial fluid from osteoarthritis (OA) patients, neither was acidic (RA pH ~ 7.5 and OA pH ~ 7.65).12 Moreover, the reported pH range shows

clear individual variation: pH ~ 6.84‐7.43,9 and pH ~ 6.95‐7.75,12 suggesting that acidosis is not necessarily a common feature of arthritis. Several

studies have found a correlation between synovial lactate concentration and acidosis,9,12,13 and it has been suggested that acidosis results from

inflammation, where glucose is metabolized to pyruvate and then to lactic acid under the relatively anaerobic conditions of arthritic synovial fluid,

where low pH and lactic acid concentrations correlate with low O2 concentration.9,10,14
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Acid evokes pain in humans,15-17 and thus inhibiting acid‐induced activation of sensory neurones is an appealing strategy for treating arthritic pain.

Sensory neurones express several acid sensors: acid‐sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1), proton‐sensing

GPCRs and certain background K+ channels.18 Furthermore, response to low pH has been shown to be sensitized by inflammatory mediators.19-24

We and others have demonstrated expression and function of TRPV1 and ASICs within articular sensory neurones,25-27 and bothTRPV1 and

ASIC3 are upregulated in different inflammatory models, suggesting their involvement in inflammatory pain.26,28,29 A common model for

inflammatory arthritis involves intraplantar/intraarticular injection of complete Freund's adjuvant (CFA),30 which although not replicating

autoimmunity does provide a robust model of RA‐like arthritis: T cell‐mediated pathogenesis, leukocyte invasion, synoviocyte hyperplasia, pannus

formation and disrupted gait.30-32 However, it is unknown if tissue acidosis occurs in this commonly used model. In CFA studies investigating

animal pain behaviour, TRPV1 knockout mice show diminished thermal hyperalgesia, but no change in mechanical hyperalgesia,33 and animals

lacking either ASIC1, ASIC2 or ASIC3 show no alleviation of thermal/mechanical hyperalgesia.34

Hyperpolarization of 13C nuclei can increase their sensitivity to detection in a magnetic resonance experiment by more than 10 000‐fold.35

This enormous increase in sensitivity has enabled real‐time imaging of tissue metabolism in vivo following intravenous injection of hyperpolarized
13C‐labelled substrates,36 including in humans.37,38 Previous magnetic resonance spectroscopic imaging (MRSI) studies in rats injected with

hyperpolarized [1‐13C]pyruvate showed raised lactate‐to‐pyruvate ratios in CFA‐induced inflammation,39 which, considering the relationship

observed between lactic acid and acidosis,9,12,13 suggested that acidosis must occur in this widely used model. The aim of this study was to

determine if tissue acidosis actually does occur in regions where there was increased lactate labelling by using hyperpolarized [13C]bicarbonate

to measure tissue extracellular pH.40,41

2 | MATERIALS AND METHODS

2.1 | Animals

All experiments were conducted in accordance with the UK Animal (Scientific Procedures) Act 1986 Amendment Regulations 2012 under a Project

License (70/7705) granted to E. St. J. S. by the Home Office; the University of Cambridge and Cancer Research UK Cambridge Institute animal

welfare ethical review bodies also approved procedures. Female C57BL/6 mice (aged 10‐12 weeks and weighing 18‐20 g, Envigo, Huntingdon,

Cambridgeshire, UK) were housed in groups of up to four mice per cage with nesting material and a cardboard tube; the holding room was

temperature controlled (21°C) and mice were on a standard 12 h light/dark cycle with food and water available ad libitum.

All chemicals were purchased from Sigma‐Aldrich (Gillingham, Dorset, UK), unless stated otherwise.

2.2 | CFA‐induced inflammation

Mice were anaesthetized using isofluorane (2%), and two 15 μl injections of 10 mg/ml CFA (Chondrex, Redmond, WA, USA) were made using a

Hamilton syringe and 27 G needle, to give a total dose of 300 μg per paw. Control injections with phosphate‐buffered saline (PBS) were made in

the contralateral hind paw.

2.3 | Assessment of paw swelling and clinical scores

Mice were weighed and calliper measurements of ankle and foot pad diameters were performed daily. Clinical scores were also made daily

according to Reference 42, with a score of 0 for a normal paw, 1 for a slight swelling and/or erythema, 2 for a pronounced swelling and 3 for

ankylosis of the paw and ankle. A two‐way ANOVA was used to compare changes in calliper measurements and clinical scores between CFA‐

and PBS‐injected paws over time (n = 5 mice from days 1 to 5). Sidak's multiple comparison test was used to compare each time point.

2.4 | MRI

Images and spectra were acquired using a 7 T MR instrument (Agilent, Palo Alto, CA, USA). Proton images were acquired axially through downwards

pointing feet using a volume coil. Images were acquired using a fast spin echo (FSE) sequence (40 × 40mm2 slices, 2 and 6‐10mm thick, covering the entire

foot, 128 × 128 data points, eight echoes, effective echo time (TE) of 48 ms, 2 s repetition time (TR)) or using a spoiled gradient echo (GE) sequence (40 ×

40 mm2, 2 mm thick slices; 128 × 128 data points; TR, 400 ms; TE 2.85 ms). Proton imaging was used to confirm positioning and to quantify foot volumes.

2.5 | Magnetic resonance spectroscopic imaging of hyperpolarized [1‐13C]pyruvate metabolism

13C images were acquired from both non‐inflamed hind paws of two mice following injection of hyperpolarized [1‐13C]pyruvate 1 day prior to

injection with CFA and PBS. CFA and PBS were then injected, as described above, and inflammation allowed to develop for five to seven days

before the 13C imaging was repeated. Each mouse was placed inside a 1H/13C volume coil (bird cage, internal diameter 42 mm) with both feet

arranged vertically inside a 20 mm circular 13C receive coil (RAPID Biomedical, Rimpar, Germany). There was no significant difference in body

weight between mice with CFA‐inflamed and non‐inflamed paws at the time of imaging (mean 18 g). A reference FSE proton image was
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acquired as a single axial slice (6‐10 mm thick) that encompassed both feet including the heel, up to where the top of the talus meets the leg.

[1‐13C]pyruvate (99% 13C labelled, 44 mg) in a solution containing 15 mmol/l of trityl radical, tris(8‐carboxy‐2,2,6,6‐tetra(hydroxyethyl)‐benzo‐

(1‐5)‐bis‐(1,3)‐dithiole‐4‐yl)‐methyl sodium salt (OX063; GE Healthcare, Amersham, UK) and 1.5 mmol/l gadolinium chelate (Dotarem, Guerbet,

Paris, France) was polarized as described previously43 using a Hypersense dynamic nuclear polarization (DNP) system (Oxford BioTools,

Abingdon, UK). The sample was dissolved in superheated (180°C, ~10 bar) buffer (40 mM 4‐(2‐hydroxyethyl)‐1‐piperazine‐ethanesulfonic acid

(HEPES), 94 mM NaOH, 30 mM NaCl and 50 mg/l ethylenediaminetetraacetic acid (EDTA)) to give a final pyruvate concentration of 0.82 M,

200 μl of which was injected via a tail vein. Magnetic resonance spectroscopic images (32 × 32 voxels, 40 × 40 mm2 field of view, 6‐10 mm thick

slice) were acquired from the same spatial location as the reference proton image. The sequence was started 20 s after pyruvate injection and had

a nominal flip angle of 5°, an echo time of 0.85 ms and a repetition time of 30 ms to give a total acquisition time of 31 s.MRSI datawere processed in

MATLAB (MathWorks, Natick, MA, USA) using custom‐written scripts. The data were Fourier transformed and individual voxel free induction decays

weremodelled44with four resonances using a least squares fitting routine. The amplitudes of the resonances at the chemical shifts of [1‐13C]pyruvate

(173 ppm) and [1‐13C]lactate (185 ppm) were used to calculate metabolite ratios. A quality control step was also applied for data display, where

the acceptance threshold on the pyruvate signal amplitude was equivalent to a signal‐to‐noise ratio greater than 11 (intensity of a 50 Hz line‐

width resonance divided by root‐mean‐squared noise). Voxels were selected for quantitative comparison between inflamed and non‐inflamed

paws by drawing a region of interest around individual feet in the reference FSE image. Voxels whose centre co‐localized to this region of interest

were included. A one‐way t‐test was performed on all voxels in a CFA‐inflamed paw, comparing the mean lactate‐to‐pyruvate ratio to that of both

paws from a mouse with non‐inflamed paws. No correction was made for multiple comparisons.

2.6 | MRS of hyperpolarized 13C‐labelled carbon dioxide and bicarbonate

Spectra were acquired from one non‐inflamed hind paw of four animals, 1 day prior to CFA injection. Spectra were similarly acquired, from four

CFA‐inflamed paws in four animals five to seven days after CFA injection. Animals were culled following completion of the MR experiments. Mice

were placed in the MR instrument with one foot (CFA‐inflamed or non‐inflamed, n = 4 feet for each group) pointing down through a 9 mm diameter

custom‐built solenoid coil that covered the foot from heel to toes. Foot volumes were determined using the open‐source Fiji software package.45

The tissue was outlined in 2 mm thick proton image slices and the resulting areas for each slice were summed. The volume was calculated for the

whole foot from the toes to the heel, where the top of the talus joins the leg. There was no significant difference in the body weights of mice with

CFA‐inflamed and non‐inflamed paws at the time of imaging (mean 19 g). Carbon‐13 labelled caesium bicarbonate was prepared and polarized as

described previously40,46: 0.7 mmol of CsH13CO3 was dissolved in 0.54 mmol of glycerol (Sigma‐Aldrich) and 63 μl of water with 15 mmol/l OX063

and 1 mmol/l Dotarem. Hyperpolarized samples were dissolved in 6ml superheated buffer containing 80 mM phosphate at pH 7.5 and 100mg/l

EDTA, and then rapidly ion exchanged with 3 g of Chelex 100 resin in the sodium form (Bio‐Rad Laboratories, Watford, UK) before injection via a

tail vein. Pulse and acquire, coil‐localized, spectra (6000 Hz bandwidth, nominal flip angle of 10°, 0.45 ms echo time, 1024 data points) were

acquired every second from 12 s after injection. The first 28 spectra—from 12 to 39 s—were summed, phase corrected and a quadratic baseline

correction applied. The 13CO2/H
13CO3 ratio was calculated by integrating the signal intensities between 127 and 123 ppm and between 163

and 156 ppm respectively and converted to a pH value by assuming a pKa of 6.17.
40

3 | RESULTS

3.1 | Significant hind‐paw inflammation is observable from 24 h after injection of CFA

Inflammation of the hind paw induced by CFA injection can be followed by measuring paw swelling, as described by Chillingworth and

Donaldson,30 and by observation of how swelling and joint damage produce anatomical changes in the foot, which is reflected in the clinical

score.42 Following injection of CFA, inflammation of the ankle and footpad was observed within 24 h and was significantly greater than in PBS‐

injected paws at all time points (Figure 1A,B, p < 0.0001, n = 5 mice). The clinical inflammation score also increased gradually from 24 h onwards,

being significantly greater than in PBS‐injected paws at all time points (Figure 1C, p < 0.0001, n = 5 mice). These results are consistent with

published data for this model30 and demonstrate that when the pH was measured there was significant inflammation in CFA‐injected mouse paws.

These data were consistent with foot volumes estimated from MRI data. The CFA‐inflamed paws in which the pH was measured were significantly

larger than non‐inflamed paws (non‐inflamed 0.180 ± 0.009 cm3 versus CFA inflamed 0.253 ± 0.021, p ≤ 0.01, Figure 1D, n = 4 feet). The mice used

for the [1‐13C]pyruvate measurements showed similar significant swelling in CFA‐injected paws (data not shown).

3.2 | Labelled lactate is elevated in the CFA‐inflamed paws of animals injected with hyperpolarized [1‐13C]pyruvate

Seven days post‐CFA administration, 13C MRS images were acquired 20 s after i.v. injection of hyperpolarized [1‐13C]pyruvate. The conver-

sion to [1‐13C]lactate was higher in CFA‐inflamed paws than in non‐inflamed paws. Although the images showed that there was a range of

lactate‐to‐pyruvate ratios across the inflamed paw (Figure 2A‐D), these were higher than in non‐inflamed paws (Figure 2E‐H) and in contra-

lateral PBS‐injected paws (Figure 2C,D). Analysis of all voxels within CFA‐inflamed or non‐inflamed paws showed that there was a significant
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elevation of the lactate‐to‐pyruvate ratio in the CFA‐inflamed paws (Figure 2I). The mean lactate‐to‐pyruvate ratios were 0.30 ± 0.23 for

non‐inflamed paws and 0.74 ± 0.32 for CFA‐inflamed paws (p < 0.001, for each individual comparison: see Figure 2I for details). This is

consistent with increased levels of lactate39,47,48 and glycolysis in the inflamed tissue, where resident fibroblast‐like synoviocytes, which

are key contributors to synovial inflammation, show a shift to glycolytic metabolism in RA.49

3.3 | Measurements of the hyperpolarized [13C]carbon dioxide/[13C]bicarbonate ratio showed no significant
difference in extracellular pH between CFA‐inflamed and non‐inflamed paws

To determine whether raised labelled lactate concentrations in the CFA model were accompanied by tissue acidosis we measured the 13CO2/

H13CO3 ratio following i.v. injection of hyperpolarized [13C]bicarbonate. Serial spectra acquired from an individual animal showed that there

was no change in the 13CO2/H
13CO3

− ratio from 12 s after bicarbonate injection, demonstrating that the carbonic anhydrase‐catalysed conversion

of bicarbonate to carbon dioxide had reached equilibrium and therefore that the pH could be estimated from this ratio (Figure 3). The 13C nuclear

spin polarization in hyperpolarized H13CO3 and
13CO2 has a very short half‐life in vivo of only about 10 s,40 and by 39 s after bicarbonate injection

the CO2 signal had decayed and was no longer detectable. Therefore, the interval between 12 and 39 s after bicarbonate injection was chosen for

subsequent analysis, where spectra acquired during this period were summed in order to calculate a 13CO2/H
13CO3

− ratio and a pH using the Hen-

derson‐Hasselbach equation. Gradient echo 1H images show the increased size of a paw injected with CFA (compare Figure 4A with Figure 4F).

Summed 13C spectra from CFA‐inflamed and non‐inflamed paws are shown in Figure 4B‐E and G‐J respectively, and the extracellular pH values

calculated from the 13CO2/H
13CO3 ratios in these spectra are shown in Figure 5. The extracellular pH values in CFA‐inflamed and non‐inflamed

paws were not significantly different (pH 7.32 ± 0.09 versus pH 7.23 ± 0.06 respectively, n = 4, p = 0.92).

4 | DISCUSSION

Although there have been several reports of tissue acidosis occurring in RA,8-11 there is large individual variability.9,12 In mouse models of arthritis it

is often assumed that tissue acidosis occurs, but no data exists to substantiate this belief. We have shown here that intraplantar injection of CFA in

the mouse paw induces inflammation and that this is accompanied by a significant increase in 13C lactate labelling in animals injected with

hyperpolarized [1‐13C]pyruvate. However, despite the apparent increase in glycolytic activity and lactate production we were unable to find any

evidence of extracellular acidification of this tissue, as assessed from measurements of the 13CO2/H
13CO3 ratio in animals injected with

hyperpolarized 13C‐labelled bicarbonate.

Measurements of lactate labelling in animals injected with hyperpolarized [1‐13C]pyruvate have been used previously to assess glycolytic

activity in inflamed joints.39 MacKenzie et al.39 measured a [1‐13C]lactate/[1‐13C]pyruvate ratio of 0.52 ± 0.16 in CFA‐inflamed rat paws at 20 s

after injection of hyperpolarized [1‐13C]pyruvate as compared with a value of 0.74 ± 0.32 (mean ± standard deviation from all image voxels of

two inflamed feet, one each from two mice) measured here in CFA‐inflamed mouse paws, also at 20 s after injection. The considerable variation

in the [1‐13C]lactate/[1‐13C]pyruvate ratio observed here (Figure 2), when compared with the rat model, reflects the small size of the mouse

paw, particularly the non‐inflamed paw, which led to relatively low signal‐to‐noise ratios in the 13C spectra. Despite this, the images of control ani-

mals, without inflamed feet, showed consistent signal‐to‐noise ratios and [1‐13C]lactate/[1‐13C]pyruvate ratios throughout the feet. The variation
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in [1‐13C]lactate/[1‐13C]pyruvate ratio between CFA‐inflamed feet most likely reflects variation in local synovial hyperplasia and inflammatory cell

invasion. While this measurement does not measure directly lactate concentration, it shows that the exchange of 13C label between pyruvate and

lactate is faster. The exchange rate is, in part, dependent on the size of the regional lactate pool47,48 and therefore is indicative of increased

glycolytic activity in inflamed tissue. MacKenzie et al.39 showed marked infiltration of leukocytes in the majority of rats with CFA‐induced hind

paw inflammation, with accumulation of inflammatory cells at sites of injection. Leukocytes become increasingly glycolytic on activation as do

stromal cells, such as fibroblast‐like synoviocytes in RA.49 Increased glycolysis is consistent with previous studies that have shown this more

directly, for example, synovial fluid taken from patients with RA has shown elevated lactate levels.9,12,13

The signal‐to‐noise ratios obtained following injection of hyperpolarized 13C‐labelled bicarbonate were not sufficient for imaging, and

therefore for these experiments we acquired spectra from the whole mouse paw. Signal localization was obtained by placing a custom‐made

receiver coil around the paw, the improved coil‐filling factor improving the signal‐to‐noise ratio. The measured pH corresponded therefore to that

of the dominant tissue observed in MR images of this volume (see Figure 4), which was mainly muscle, tendon, ligament and connective tissue in

the paw. The very short half‐life of the nuclear spin polarization in hyperpolarized H13CO3 and
13CO2 means that the ratio reflects predominantly

the extracellular pH46,50 in regions that are relatively well perfused and that would have also received the hyperpolarized [1‐13C]pyruvate. The

absence of a decrease in extracellular pH measured here in CFA‐inflamed paws (pH 7.32 ± 0.09 versus pH 7.23 ± 0.06 in controls) is in contrast
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to a study by Scholz et al.,41 who used hyperpolarized [13C]bicarbonate to measure pH in an acute inflammation model in the rat leg (injection of

concanavalin A 2 hours prior to imaging). The lower pH reported in this study (pH 7.0) may reflect the acute nature of the inflammation induced by

concanavalin A, as compared with the more chronic inflammation induced by CFA, and also the later imaging time point used here. Our failure to
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observe a lowered pH could have been due to a lack of equilibration of hyperpolarized 13C label between H13CO3 and 13CO2, which is catalysed

predominantly by carbonic anhydrase.46 However, we demonstrated that 12 s was sufficient to achieve label equilibration (Figure 3), which is less

than the approximately 16 s required in a murine lymphoma in vivo,49 but comparable to the time required for label equilibration in rat heart

muscle,51 which included the time for formation of carbon dioxide and bicarbonate from [1‐13C]pyruvate catabolism.

The hyperpolarized 13C‐labelled lactate detected following injection of hyperpolarized [1‐13C]pyruvate is predominantly intracellular, at least in

animal tumour models,52 whereas the pH determined using hyperpolarized 13C‐labelled bicarbonate is predominantly extracellular.40 Therefore,

our failure to detect a decrease in pH, despite an increase in glycolytic activity, may be because any pH decrease is largely intracellular. However,

lactic acid is rapidly exported from cells,53-55 and it seems unlikely that there would not have been an increase in extracellular lactic acid

concentration in the inflamed joints, in which case the resulting increase in H+ concentration must not have exceeded the extracellular buffering

capacity of the tissue. Whatever the explanation, our results have shown that increased glycolytic activity in the inflamed joint is not accompanied

by extracellular tissue acidosis.

Although we have not assessed pain behaviour here, this was inferred from measurements of joint swelling and worsening clinical scores,

which are features that have been shown previously to correlate with indicators of pain, namely mechanical and thermal hyperalgesia, in CFA‐

induced inflammation.29,30,34,56 The results presented here would suggest, therefore, that tissue acidosis is not itself a primary contributor to

the pain observed in the CFA‐induced arthritis model, which might perhaps explain the lack of relief from either mechanical or thermal hyperalgesia

in mice lacking ASIC1, ASIC2 or ASIC3.34 AlthoughTRPV1 knockout mice display diminished thermal hyperalgesia in the CFA model,33 this is likely

due to a shift in the thermal sensitivity of TRPV1 activation resulting from inflammatory mediators such as nerve growth factor dependent removal

of phosphatidylinositol 4,5‐bisphosphate inhibition of TRPV1,57 rather than due to acid‐mediated modulation of the TRPV1 thermal activation

threshold, which can also occur.58

5 | CONCLUSIONS

In summary, we have demonstrated that in the CFA‐inflamed mouse paw model of arthritis there is elevated production of lactate, but that this is

not coupled with a significant decrease in extracellular pH. This result could explain the lack of phenotype observed in mice lacking different ASIC

subunits and questions the validity of CFA‐induced arthritis as a model for RA, in which tissue acidosis has been demonstrated.
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