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Estrogens regulate various physiological processes such as cell growth, reproduction, development
and differentiation. In premenopausal women, the ovaries are the primary site of estrogen synthesis
producing the predominant estrogen 173-estradiol (E2), which acts locally and systemically on target
organs and cells. In postmenopausal women and in men, the source of E2 is local conversion of
testosterone and androstenedione to E2 by the cytochrome P450 aromatase enzyme in extragonadal
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sites, such as breast, brain and adipose tissue where it acts locally as a paracrine or intracrine factor. In
addition to effects by E2 on normal cells and normal physiology, estrogens also play an important role
in several pathological processes including cancer, metabolic and cardiovascular disease, neuro-
degeneration, inflammation, and osteoporosis. The cellular effects of estrogens are mediated by two
estrogen receptors, ERa and ERP.

Estrogen receptors: expression, structure and isoforms

The existence of an ER was demonstrated by Elwood Jensen in 1958 [1], and the corresponding gene
was cloned in 1985. ERp, was cloned from the rat prostate and ovary in 1996 [2]. ERa is mainly
expressed in reproductive tissues (uterus, ovary), breast, kidney, bone, white adipose tissue and liver,
while expression of ERp is found in the ovary, central nervous system (CNS), cardiovascular system,
lung, male reproductive organs, prostate, colon, kidney and the immune system. As members of the
nuclear receptor protein family, ERs are found mainly in the nucleus, but also in the cytoplasm and
mitochondria.

The ERa and ERP genes are located on different chromosomes, 6q25.1 and 14q23.2, respectively. ERs
are composed of three functional domains: the NH;,-terminal domain (NTD), the DNA-binding domain
(DBD), and the COOH-terminal ligand-binding domain (LBD) (Fig. 1). The NTD encompasses a ligand-
independent activation function (AF1) domain involved in transcriptional activation of target genes,
and with only 16% similarity between ERa and ERP. The DBD is highly conserved between ERa. and ERf
with 97% amino acid identity and mediates sequence-specific binding of ERs to DNA sequences in
target genes denoted estrogen-responsive elements (EREs). In contrast, the LBDs of ERa and ERf show a
59% overall amino acid sequence identity yet the ligand-binding pockets of the two subtypes show only
minor differences in structure. Importantly, these small structural differences in the ligand binding
pockets have allowed the development of subtype selective ligands. Propyl pyrazole triol (PPT) and 2,
3-bis (4-hydroxyphenyl)-propionitrile (DPN) are commonly used ERa and ERP selective agonists,
respectively. The LBD also contains a ligand-dependent activation domain (AF2).

Due to alternative splicing of ER-mRNAs, three ERa isoforms have been identified (Fig. 1). ERzA3
lacks exon 3, which encodes part of the DNA-binding domain [3]. ERa36 lacks both AF-1 and AF-2, and
the last 138 amino acids (aa) are replaced with a unique 22 aa sequence [4]. ERa46 lacking aa 1-173
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Fig. 1. The structures of the ER isoforms. Different functional domains are highlighted: the NH,-terminal domain (NTD) in blue,

DNA-binding domain (DBD) in orange, and the COOH-terminal or ligand-binding domain (LBD) in green. The NTD contains a ligand-
independent activation function (AF1) region which is responsible for recruitment of co-regulatory proteins.
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which includes AF-1, was first identified and characterized as a dominant negative inhibitor of ERa.
activity in osteoblasts [5]. For ERB, at least four ER isoforms have been described, referred to as ERBcx/
2, ERB3, ERP4 and ERP5 [6] (Fig. 1). All ERB variants have novel C-terminus, and are unable to bind
estrogens and other investigated ligands.

Genome-wide studies of ERs
ER cistromes

Consistent with the fact that ERa and ER are highly homologous in their DNA-binding domains,
identification of DNA binding regions showed substantial overlap in binding sites for the two ERs [7].
Both receptors interact with binding sites enriched in ERE motifs [8]. However, ERa. and ERf also
display differences in bound DNA regions [9]. Additionally, the binding of one receptor affected the
binding pattern of the other [10]. ER cistromes may correlate with human disease and response to
treatment. For example, analysis of ERa. DNA binding sites demonstrated that FOXA1 is a major
determinant of estrogen-ER activity and endocrine response in breast cancer cells [11].

ER transcriptomes

Gene expression profiling of ERa. showed up-regulation of for example cell growth related genes
[12]. Enriched functional clusters of ERf modulated genes included signal transduction pathways, and
genes controlling cell cycle progression and apoptosis [13]. Analysis of ERa- and ERB-mediated gene
regulation in the T47D cell line with inducible expression of ERp, revealed that ER had diverse effects
on ERa regulated gene expression, enhancing or counteracting the effects of ERa [14]. ERB inhibited
approximately 70% of ERa. regulated genes including genes involved in proliferation and metabolism
[14]. These findings suggested that ERa and ERf in breast cancer cells likely impact cell proliferation
and the activities of diverse signaling pathways.

ER interactomes

ERs regulate transcription via recruitment of different transcriptional coregulators (CoRs), which
play a central role in the activation (coactivators) or repression (corepressors) of genes. Less than 50% of
these CoRs were common to both ERs, suggesting that differences in interactomes of the two ERs are
likely to contribute to the distinct roles of the two receptor subtypes [15]. Comparative analyses of
agonist (E2) versus antagonist tamoxifen (Tam), raloxifene (Ral) or ICI 182,780 (ICI)-bound ERa
interacting proteins reveal significant differences among ER ligands that relate to their biological ac-
tivity. In particular, the E2-dependent nuclear ERa interactome is different and more complex than
those elicited by Tam, Ral, or ICI, which, in turn, are significantly divergent from each other [16].

ERs and cancer
ERs and breast cancer

ERa and breast cancer

ERa is expressed in not more than 10% of normal breast epithelium but approximately 50—80% of
breast tumors [17]. It is found in both ductal and lobular epithelial and stromal cells.

The role of ERa. in mammary gland development has been demonstrated in ERa. knockout (ERaKO)
mice [18]. ERa. promotes tumorigenesis and progression of breast cancer. Anti-hormonal therapy is
commonly used in breast cancer patients with ERa expression, including the selective estrogen re-
ceptor modulators (SERMs) tamoxifen, raloxifene and toremifene, the selective estrogen receptor
degradator fulvestrant, and the aromatase inhibitors anastrozole, letrozole and exemestane. Tamoxifen
is the most effective and widely used antiestrogen therapy for breast cancer. However, only 70% of ERa
positive breast cancers respond to tamoxifen treatment and 30—40% of patients receiving therapy
relapse and become resistant to this therapy [19]. Additionally, tamoxifen, serving as an estrogen
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antagonist in the breast, mimics estrogen effects acting as an estrogen agonist in other tissues, such as
bone, endometrium and the cardiovascular system, thus having potentially severe side effects in these
tissues. Another SERM, raloxifene, is reported to have less profound side effects compared to tamox-
ifen, particularly with decreased risk of endometrial cancer and thrombosis.

The ratio of ERzA3 to wild type ERa is substantially reduced in all breast cancer cell lines and in
breast cancers, suggesting that loss of the ER2A3 isoform is associated with an early event in carci-
nogenesis. Molecular studies suggest that ERzA3 functions as a dominant negative regulator of ERa.
ER236 has been shown to correlate with carcinogenesis, aggressiveness, and therapeutic response of
breast cancer. Binding to the same target DNA sequence as wild type ERa does, ERa36 is expected to
function as a powerful competitor of ERa. However, ERa36 mainly locates to the plasma membrane and
to the cytoplasm where it activates rapid membrane-initiated non-genomic pathways. In recent years,
studies have focused on the association between ERz36 and tamoxifen resistance [20]. Additionally,
ERa36 is highly expressed in ERa-negative breast cancer. ERz46 acts as a negative regulator of breast
cancer. Its overexpression inhibited MCF-7 breast cancer cell proliferation and inhibited E2-induction
of the cyclin D1 promoter [21] and ERa regulation of pS2 gene [22]. ERxz46 levels were reduced in
tamoxifen resistant breast cancer cells and ERa46 re-expression inhibited cell proliferation [23].

ER@ and breast cancer

ERP knockout (ERBKO) mice undergo an overall normal mammary gland development. However,
subtle effects associated with decreased differentiation and increased proliferation in the alveoli of
lactating mammary glands are sometimes observed in these mice [24]. Approximately 80% of normal
breast epithelial cells express ERP. Its expression is decreasing and even lost during breast cancer
progression, which is associated with promoter hypermethylation [25]. In vitro studies showed that re-
expression of ERP in breast cancer cell lines inhibited cell proliferation, promoted apoptosis and
enhanced the efficacy of chemotherapeutic agents [26]. Clinical evidence also revealed that loss of ER
expression is associated with a poor prognosis [27] and resistance to endocrine therapy [28]. ER in-
hibits breast cancer cell proliferation through repressing activation of MAPK and PI3K signaling
pathways [29]. Regulation of genes controlling cell cycle progression and apoptosis, may also
contribute to the suppression of cell proliferation [13]. However, a few studies claim that ERf
expression is associated with enhanced cell proliferation, and is a poor prognostic factor in breast
cancer [30,31]. Other studies claimed that ERp expression was not correlated with clinical outcome in
breast cancers in postmenopausal patients [32].

The expression and role of ERB2 in breast cancer remain unclear [33]. Some studies showed that
ERP2 expression levels are lower in cancer compared with the corresponding normal tissues, indicating
a protective role in breast cancer. Consistently, studies showed that ERB2 is a good prognostic indicator
in breast cancer. A possible mechanism may be repression of ERa activity by induction of proteasome-
dependent degradation [34]. Other studies report opposite effects, and claim that ER2 expression is
indicative of cellular proliferation [35]. Some studies showed that ERB2 predicted the response to
endocrine therapy [36] while other studies did not reproduce such effects [37].

ERB5 exhibited protective role in breast cancer patients. Studies of clinical samples showed a
positive association of ERB5 expression with a longer relapse-free survival (RFS) [38] and a significant
correlation of its nuclear expression with overall survival (0S) [36]. Recently ERB5 has also been found
to confer sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis [39].

ERs and ovarian cancer

In reproductive age women, ERa is present in the ovarian stroma and thecal cells, ovarian surface
epithelium and in corpus luteum. For postmenopausal women, ERa is found in the ovarian surface
epithelium, in epithelial inclusion cysts and in the stroma. In contrast, ERp is localized predominantly
in the granulosa cells [40].

Most ovarian cancer patients express ERa and/or ERB. The expression levels of ERa are closely
associated with estrogen-dependent growth, invasion and response to endocrine therapy in ovarian
cancer. ERa is a direct target of the tumor suppressor microRNA (miR)-206, which is down-regulated in
ERa-positive ovarian cancer cell lines and tissues. Introduction of miR-206 mimics inhibits cell
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proliferation and invasion of ovarian cancer cells [41]. Recent studies show that effects of ERa in
promoting ovarian cancer progression could be mediated by long non-coding RNAs, such as
TC0100223, TC0101686 and TC0101441. TC0101441 was reported as an independent prognostic factor
for overall survival [42]. Expression of ERa and its promoting role in ovarian cancer suggested that
endocrine therapy could be an attractive treatment option. However, anti-estrogen treatment is not
commonly used in ovarian cancer due to modest response rate.

ERB levels and/or the ERB/ERa ratio decreases along with ovarian carcinogenesis, indicating that
loss of ERpB expression may be involved in carcinogenesis. Treatment with the ERB agonist DPN or re-
introduction of ERp significantly suppressed cell growth in both ovarian cell lines and xenografts
[43—45]. The inhibitory effects of ERp were mediated via down-regulating total retinoblastoma (Rb),
phosphorylated Rb, phospho- RAC-alpha serine/threonine-protein kinase (AKT) as well as cyclins D1
and A2, and up-regulating cyclin-dependent kinase inhibitor p21 (WAF1). In addition, ER} had a direct
effect on ERa by strongly inhibiting its expression and activity.

Interestingly, some studies revealed that normal ovarian epithelium exhibited almost exclusively
strong nuclear staining of ERB, while ovarian cancer tissue mostly showed cytoplasmic immunopo-
sitivity, and cytoplasmic ERf expression was shown to be an independent unfavorable prognostic
factor for disease free survival [46]. Furthermore, cytoplasmic ERB2 expression was also reported to be
associated with reduced 5-year survival and chemoresistance [47]. These novel findings suggest that
ERP and its isoforms may have different roles and be associated with distinct prognosis depending on
their cellular localization.

ERs and prostate cancer

In addition to androgens, estrogens may also affect prostatic growth and development, as shown in
ERaKO mice which display altered branching morphogenesis [48]. In the adult mouse prostate there is
very little ERa expression and most of it is in the stromal compartment. ERp is expressed at high levels
in prostatic epithelium in adult mice and humans. Knockout of ERp causes hyperplasia of the ventral
prostate as well as increased cellular Ki67-positivity [49].

In humans, the expression of ERa is gradually increased from prostate intraepithelial neoplasia,
invasive cancers to metastatic lesions at both mRNA and protein level. Studies of ER&KO mice revealed
that ERa is an important determinant of prostate carcinogenesis [50]. In comparison to ERa, ERp is
gradually lost during prostate carcinogenesis due to DNA promoter methylation [51]. Combined
treatment of prostate cancer cell lines in vitro with DNA methyltransferase and histone deacetylase
inhibitors have been shown to effectively restore ERP expression, with reduced proliferation and
increased apoptosis [52]. Therefore, ERB has emerged as a promising new target for prostate cancer
treatment.

Many trials have shown strong effects of antiestrogen for the treatment of prostate cancer. Studies
showed a significant decrease in early prostate cancer progression when men were given toremifene
[53]. The SERM raloxifene caused apoptosis in androgen-independent ERa (—) ERpB (+) PC3 cells [54].
Additionally, raloxifene was found to inhibit growth of prostate cancer lung metastasis [55].

Although ERB is silenced or reduced in the majority of prostate adenocarcinomas, some studies
showed that patients with ERB-positive cancers have a significantly decreased relapse-free survival
[56].

ERs and colon cancer

Clinical and animal studies show that hormone replacement therapy (HRT) reduces the risk of colon
tumor formation in females. Additionally, men are more likely to develop colorectal cancer compared
with women of similar age. These findings indicate that estrogen may lower the risk for colorectal
cancer. ERo. mRNA levels are much lower than ERp levels and are similar between normal mucosa and
tumor samples. ERf is the predominant ER in the colonic epithelium and the ERP level is lower in colon
cancer compared to normal tissue. The decreased levels of ER in colorectal cancer occurred in parallel
to loss of differentiation and advanced Dukes staging. The protective role of ERB in colon cancer
progression has been confirmed in in vivo studies in mice that spontaneously develop intestinal
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adenomas (ApcMin/+) in which deletion of ERP lead to an increase in the size and number of adenomas
[57] and where treatment with an ERB-selective agonist had the opposite effect [58]. Genome-wide
studies of colorectal cancer cell lines re-expressing ERp showed that besides apoptosis, cell differen-
tiation, and regulation of the cell cycle are the most affected functional consequences. ERP re-
expression also down-regulates IL-6 and its downstream networks, which indicates that ERp medi-
ated antiinflammatory mechanisms are involved in colon carcinogenesis [59]. In the same model, the
oncogenic miR-17-92 and miR-200a/b were found to be strongly down-regulated upon re-expression
of ERB [60].

ERs and metabolic disease

Estrogens have been clearly shown to regulate glucose and lipid metabolism using either models of
estrogen-/ER-depletion or estrogen application/replacement. Estrogen deficiency promotes metabolic
dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes (T2D). In rodents, it
has been demonstrated that aromatase, the key enzyme of estrogen production, knockout (ArKO) mice
display insulin resistance (IR), impaired glucose tolerance (IGT), and increased abdominal fat, which are
reversible by E2 treatment [61]. Ovariectomy (OVX), resulting in low estrogen levels, leads to increased
body weight, basal blood glucose and IGT which are reversible by re-introduction of estrogen [62].
Studies of ob/ob and high fat diet (HFD) fed mice, models of obesity and T2D, showed that estrogen
treatment lowers body weight, improves glucose tolerance and insulin sensitivity in both mouse models
[63,64]. In humans, the prevalence of early insulin resistance and glucose intolerance is higher in men
than in women [65]. Postmenopausal women with estrogen deficiency were shown to have an accel-
erated development of visceral obesity, IR and T2D [62]. Several clinical trials involving postmenopausal
women on hormone replacement therapy (HRT) demonstrated a reduced incidence of T2D, lower
glucose plasma levels, and improved systemic insulin sensitivity [62,66]. It has been well documented
that estrogens regulate energy homeostasis via both central and peripheral tissues (Fig. 2).

Central regulation of energy balance by estrogens

The hypothalamus is an essential area in the CNS that controls food intake, energy expenditure, and
body weight homeostasis. Lesion of specific hypothalamic nuclei led to disorders of central energy
homeostasis, such as the ventromedial hypothalamus (VMH) or the lateral hypothalamic area. ERa. is
abundantly expressed in the brain in the ventrolateral portion of the VMN, the arcuate nucleus (ARC),
the medial preoptic area, and the paraventricular nuclei. ERp is found in the same hypothalamic nuclei,
but its expression is significantly lower relative to ERa. ERa seems to be the major regulator of central
energy homeostasis. ERa silencing in the VMN resulted in an increase of food consumption as well as
reduced energy expenditure caused by diminished physical activity and impaired thermogenic re-
sponses to feeding [67]. OVX-rats and -mice treated with E2 and PPT exhibited a strong ERa-dependent
inhibitory effect on eating behavior [68]. On the contrary, ER} deletion did not promote food intake
and/or obesity [69].

Peripherial regulation of energy balance by estrogens

Estrogens regulate lipid metabolism in adipose tissue

Adipose tissue plays a major role in the regulation of lipid and glucose homeostasis and insulin
sensitivity including via estrogen signaling. Estrogens affect adipose tissue by induction of lipolysis
(e.g. due to activation of hormone-sensitive lipase, HSL) and reduction of lipogenesis, mostly by
decreasing activity of lipoprotein lipase (LPL). Estrogens also increase the expression of insulin re-
ceptors in adipocytes, which enhances insulin sensitivity.

Both ER isoforms are expressed in adipose tissue. Both female and male ER2KO mice exhibit
increased adipose tissue mass, IR and IGT, as well as adipocyte hyperplasia and hypertrophy [70,71] in
white adipocyte tissue [72]. The role of ERf in glucose and lipid metabolism in adipocytes is less clear.
ERBKO in male mice resulted in animals with a similar body weight and fat distribution, as well as lipid
and insulin levels, when compared to control. However, ERBKO female mice under HFD showed a
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Fig. 2. Summary of estrogen actions on the central nervous system (CNS), liver, adipocytes, skeletal muscles, and pancreatic f cells.
Estrogen deficiency in these tissues will contribute to metabolic dysfunction, such as metabolic syndrome, type 2 diabetes, and
obesity.

higher weight gain than their wild type littermates. These effects were closely associated with a strong
activation of peroxisome proliferator-activated receptor gamma (PPARY), a key adipogenic and lipo-
genic factor [73]. Recent studies of female OVX Wistar rats under HFD showed that ERB-selective
agonists significantly decreased lipogenic (sterol regulatory element-binding protein- 1C (SREBP- 1c)),
fatty acid synthase (FAS) and adipogenic genes (LPL, PPARY) in adipose tissue [74]. These findings
suggested anti-lipogenic effects of ERB. Furthermore, deletion of the ERp gene protected female mice
against diet-induced insulin resistance and glucose intolerance [73]. Together, both ER isoforms seem
to participate in the anti-lipogenic actions of estrogens in adipose tissue.
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Estrogens regulate glucose up-take in skeletal muscle

Approximately 75% of glucose clearance in response to insulin secretion is mediated by the skeletal
muscle. The insulin signaling pathway that regulates glucose uptake includes insulin receptor, the
insulin receptor substrate (IRS), phosphatidylinositol-3 (PI3K) and AKT kinase. Activation of this
pathway eventually leads to translocation of the cytoplasmic glucose transporter 4 (GLUT4) to the cell
membrane where is facilitates transport of glucose into the cell. GLUT4 is highly expressed in muscle
and represents a rate-limiting step in the insulin-induced glucose uptake [75]. E2 modulates glucose
homeostasis in the muscle mainly through its actions on key proteins of the insulin signaling pathway
including the expression and translocation of GLUTA4.

Skeletal muscle expresses both ERs, and in mice ER is the predominant isoform. Treatment of OVX
rats with PPT increases GLUT4 expression and glucose uptake in skeletal muscle [76]. PPT treatment
also increases GLUT4 translocation to the cell membrane of L6 myoblasts [77]. In contrast, DPN
treatment decreases GLUT4 expression in the muscle in E2-deficient ArKO male mice [78]. In summary,
ERa and ERP display distinct actions on the expression of GLUT4.

Estrogens regulate metabolism in liver

Liver plays an important role in the maintenance of glucose homeostasis through glucose pro-
duction by glycogenolysis and gluconeogenesis. Estrogens regulate liver glucose and lipid homeostasis
and hepatic cholesterol output. Administration of E2 increased high density lipoprotein and tri-
glycerides and decreased low density lipoprotein, total cholesterol, lipoprotein a, and fasting insulin in
postmenopausal women [79]. Long term E2-treatment exhibited a major anti-diabetic effect in diabetic
ob/ob mice, and decreased expression of lipogenic genes in the liver [63]. Recent studies have
demonstrated that the use of antiestrogen therapy leads to abnormal lipid profile and steatosis [80].

ERa is the predominant ER isoform in hepatocytes [81]. ERzKO mice display hepatic insulin resis-
tance, and the expression of genes involved in hepatic lipid synthesis was increased whilst expression
of genes involved in lipid transport was decreased in these animals [82]. However, liver-selective
ablation of ERa did not re-capitulate the metabolic phenotypes of ERaKO mice, indicating that he-
patic ERa action may not be the responsible factor for the previously identified hepatic insulin resis-
tance in ERaKO mice [83].

Estrogens regulate pancreatic ( cell function

Estrogens are known regulators of pancreatic f cell function. It has rapid effects on f cells, regu-
lating membrane depolarization, Ca2+ influx, insulin secretion, and overall glycemia. In addition,
estrogens also protect f cells from apoptosis.

Both ERs have been identified in the nucleus and cell membrane of B cells. ERa. is the predominant
receptor isoform for regulation of the insulin level in the pancreas. The absence of ERa results in islet
dysfunction and hyperinsulinemia [82]. In B cell islets isolated from Swiss albino mice, PPT treatment
increased insulin content, while DPN treatment did not [84]. Moreover, protective effects of estrogens
against apoptosis were also mainly mediated via ERa. E2-treatment inhibited streptozotocin (STZ)-
induced B cell apoptosis, increased insulin production, and improved insulin resistance and glucose
intolerance. The protective actions of E2 were abrogated in ERaKO female mice [85]. Furthermore,
estrogens regulate the ATP-sensitive potassium (Karp) channels in B cells [86]. Closure of Katp channels
is a pivotal event in the glucose-induced insulin release. Once the channel is closed, membrane de-
polarizes and insulin is released. The main function of ERp in  cells seems to be a rapid regulation of
Karp channel and insulin secretion, as it showed that E2 and DPN reduced the activity of Katp channels
in B cells from wild type and ERaKO mice, but not in those from ERBKO mice [86].

Hormone replacement therapy in metabolic diseases

Pharmacological estrogens can reverse the progression of metabolic diseases. Estrogens have been
approved by FDA for postmenopausal therapy. However, due to ubiquitous expression of ERs, the
metabolic benefits provided by HRT are often associated with increased risk of heart disease, gyne-
cological and breast cancer. One strategy to make estrogens therapeutically more efficient is to develop
novel tissue selective SERMs. Another approach is to design novel molecules that would direct E2 to
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target tissues without the undesirable effect of general E2 therapy. Recent reports on the development
of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate, which uses a peptide carrier to deliver es-
trogen selectively to specific tissues, showed high efficacy and much less side effects [87].

Summary

Estrogens play important roles in physiological processes via both ERa. and ERB. Abnormalities in
estrogen signaling lead to different types of pathological conditions, such as cancer and metabolic
diseases. In general, ERa expression increases at early stages of cancer, and acts as a tumor promoter.
Antiestrogens are widely used for the treatment of breast cancer. On the contrary, ER levels are
reduced during carcinogenesis and cancer progression, and act as a tumor suppressor. Accordingly, ER
is a promising potential target for cancer therapy. However, some contradictory findings regarding the
expression and functions of ER in cancer have been reported. Such discrepancies could reflect het-
erogeneity of patient populations. They may also be due to high heterogeneity of breast tissue, and low
correlation between ERB mRNA and protein levels. Thus, there is a clear need to further study the roles
of ERB in cancer.

Estrogens play important roles in maintenance of lipid and glucose homeostasis. They centrally
regulate food intake and energy expenditure via action on the CNS, and they also act on peripheral
tissues to maintain energy homeostasis. ERa and ERp play distinct role in insulin and glucose meta-
bolism. The major concern in using therapies targeting ER in treatment of metabolic disease is the risk
of achieving undesirable effects. Further studies are needed to identify and develop new molecules that
target ERs in selective metabolic tissues.

Practice points

e The presence of ERa is an important indicator for use of hormone therapy for breast cancer
treatment.

e The use of antiestrogens such as tamoxifen, raloxifene, fulvestrant, anastrozole, letrozole or
exemestane is recommended against ERa-positive breast cancer.

Research agenda

e The role of ERa and ERP in cancer and metabolic disorders, and their potential for clinical
applications need to be clarified.

e The mechanisms of resistance to antiestrogen treatment in breast cancer must be further
investigated.

e New effective tissue and receptor selective antiestrogens should be identified.
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